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Summary: A wide variety of functionalized and unfunctionalized olefins are efficiently converted to the 
corresponding cis vicinal diols in moderate to good enantiomeric excess via the “slow addition” enhanced 
catalytic asymmetric osmylation process. 

About a year ago we described an osmium-catalyzed asymmetric dihydroxylation process employing 
cinchona alkaloid derivatives as the chiral ligands.1 We subsequently discovered the presence of two diol- 
generating catalytic cycles in this process. 2 The first cycle turns over faster and produces diol in high 
enantiomeric excess, while the second proceeds slower and exhibits low, to opposite enantiofacial selectivity. 
Slow addition of the olefin to the reaction mixture minimizes production of diol by the second cycle, 
thereby increasing the enantiomeric excess of the product. Under such “slow addition” conditions, the scope 
of the asymmetric dihydroxylation process is greatly enhanced and includes simple hydrocarbon olefins, 
aromatic olefins, allylic alcohols and their esters, allylic chlorides, a&unsaturated esters, acetals of a,b- 
unsaturated aldehydes, ketals of a$-unsaturated ketones, and water sensitive trimethylsilyl enol ethers, etc.. 
Reported here are some representative examples selected from the over 60 olefins examined to date (Table 
11, general procedures for running the reaction, 3 and methods for determination of the enantiomeric 
excesses of the diols produced (Table 1). 
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The examples in Table 1 reveal that this catalytic asymmetric dihydroxylation, even at its present level 
of development, proceeds with moderate to good levels of asymmetric induction across a wide range of 
olefins. Its most striking feature is the lack of requirement for a directing functional group. The process 
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Table 1. Percentage enantiomeric excesses of diols obtained in the asymmetric dihydroxylation of 
olefins under stoichiometric and catalytic conditions. 
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Table 1. continued 

entry olefins 

16 

stoichiometri@ 

89 

catalyticb method of ee & 
(slow addition) de determinationc 
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a. All stoichiometric reactions were carried out in acetone-water, IO:1 v/v, at 0 % and at a concentration of 0.15M 
in each reagent except entries 8, 17, 20 which were performed in toluene under otherwise identical conditions. b. All 
reactions were carried out at 0 ‘C (unless otherwise cited) as described in the general procedure (note 3), and the 
period of addition of olefin is indicated in parentheses. All the ee’s shown in the table were obtained with dihyro- 
quinidine p-chlorobenzoate as &and. All ten cases for which literature correlations exist, entries 1, 5, 6, 8, 9, 10, 11, 
14, 16, 23, abide by the face selection rule in the Scheme, the others are expected to do likewise. c. Methods of ee & 
de determination: I. GLC analysis of the bis- or mono-Mosher esters5 of dials on a 29m 5% phenylmethylsilicone 
capillary column. II. lH NMR of bis-Mosher esters of dials. Entries 2, 11 as solutions in CDC13, entry 16 in 
benzene-d6. III. IH NMR of diols as a solution in CDC13 in the presence of tris[(3-trifluoromethylhydroxy- 
methylene)-d-camphoratol, europiumfII1) derivative. IV. HPLC of bis- or mono-Mosher esters of dials on Pirklc IA 
Ionic D-phenylglycinc column (25 cm x 10 mm I.D.). Entries 4, 5, 6 eluted with 0.5% i-PrOH in hexanc (3 mL/min), 
entries 7, 18, 19 eluted with 2.5% i-PrOH in hexanes (2 mL/min), entry 13 with 0.5% i-PrOH in hcxanes (2 mL/min), 
entries 15, 21 with 2.5% i-PrOH in hexancs (3mL/min). V. HPLC of bis-acetate of diols on Pirkle IA Ionic 
D-phenylglycine column (25 cm x IO mm I.D.), eluted with 5% i-PrOH in hexanes (2mL/min). VI. HI’LC of mono-, bis- 
or tris-Mosher esters on Pirkle covalent D-phenylglycine column (25 cm x 10 mm I.D.). Entry 10 eluted with 10% 
i-Pi-OH in hexanes (2mL/min), entries 17, 20, 23 eluted with 2.5% i-PrOH in hexanes (2mL/min), entry 22 with 2.5% 
i-PrOH in hexanes (3mL/min). VII. lH NMR of diols as a solution in CDC13, d. GLC conditions: 220 ‘% for 4 min, 
then 2 ‘C/min to 300 T. e. This reaction was carried out in the prcrence of 2 equiv. of Et+JOAc4H20 for 1 equiv. of 
olefin. In the case of a,p-unsaturated esters and allylie alcohols, the presence of acetate results in lower ee’s. f. This 
reaction was carried out in the presence of 2 equiv. of MeqNOH.5H20 and 2 equiv. AcOH. g. See note 4. h. GLC 
conditions: 200 % for 4 min, then 2 *C/mm IO 250 ‘C. i. The 2,6dichlorophenyl analog of entry 11 gave diol of -75% 
ee under the old conditi0ns.l j. The inherent diastereofacial selectivities exhibited in osmylation of olefin entries 14 
and 15 in the absence of alkaloid arc 2.1:1 (2S:2R) and 1:l.l (2S:2R), respectively. k. The a-hydroxykctone was the 
product isolated. 
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is also exceedingly easy to perform and can be run very concentrated, the latter consideration greatly 
simplifies large scale applications. An immediate goal is to further improve the enantioselectivity of the 
reaction, but in the meantime most of the enriched dials can be raised to enantiomeric purity by 
recrystallization, either of the diol itself 6 or of a crystalline intermediate encountered during subsequent 
required synthetic steps. The resulting homochiral diols are proving useful as chiral synthons, for 
example they can be readily converted into the corresponding cyclic sulfates which exhibit epoxide-like 
reactivity.7rg Asymmetric syntheses employing these cyclic sulfates and related diol-derived synthons will 
be the subject of future reports. 
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